Forma polar de $$$i$$$
Tu entrada
Encuentra la forma polar de $$$i$$$.
Solución
La forma estándar del número complejo es $$$i$$$.
Para un número complejo $$$a + b i$$$, la forma polar viene dada por $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, donde $$$r = \sqrt{a^{2} + b^{2}}$$$ y $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.
Tenemos que $$$a = 0$$$ y $$$b = 1$$$.
Por lo tanto, $$$r = \sqrt{0^{2} + 1^{2}} = 1$$$.
Además, $$$\theta = \operatorname{atan}{\left(\frac{1}{0} \right)} = \frac{\pi}{2}$$$.
Por lo tanto, $$$i = \cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$.
Respuesta
$$$i = \cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)} = \cos{\left(90^{\circ} \right)} + i \sin{\left(90^{\circ} \right)}$$$A