# Derivative of $$$2^{x}$$$

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

### Your Input

**Find $$$\frac{d}{dx} \left(2^{x}\right)$$$.**

### Solution

**Apply the exponential rule $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ with $$$n = 2$$$:**

Thus, $$$\frac{d}{dx} \left(2^{x}\right) = 2^{x} \ln\left(2\right)$$$.

### Answer

**$$$\frac{d}{dx} \left(2^{x}\right) = 2^{x} \ln\left(2\right)$$$A**