Ολοκλήρωμα του $$$\frac{\ln\left(2\right)}{x}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\ln\left(2\right)}{x}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\ln\left(2\right)}{x}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\ln{\left(2 \right)}$$$ και $$$f{\left(x \right)} = \frac{1}{x}$$$:

$${\color{red}{\int{\frac{\ln{\left(2 \right)}}{x} d x}}} = {\color{red}{\ln{\left(2 \right)} \int{\frac{1}{x} d x}}}$$

Το ολοκλήρωμα του $$$\frac{1}{x}$$$ είναι $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\ln{\left(2 \right)} {\color{red}{\int{\frac{1}{x} d x}}} = \ln{\left(2 \right)} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Επομένως,

$$\int{\frac{\ln{\left(2 \right)}}{x} d x} = \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{\ln{\left(2 \right)}}{x} d x} = \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}+C$$

Απάντηση

$$$\int \frac{\ln\left(2\right)}{x}\, dx = \ln\left(2\right) \ln\left(\left|{x}\right|\right) + C$$$A


Please try a new game Rotatly