Integral dari $$$\frac{\ln\left(2\right)}{x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\ln\left(2\right)}{x}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\ln{\left(2 \right)}$$$ dan $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}{\int{\frac{\ln{\left(2 \right)}}{x} d x}}} = {\color{red}{\ln{\left(2 \right)} \int{\frac{1}{x} d x}}}$$
Integral dari $$$\frac{1}{x}$$$ adalah $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\ln{\left(2 \right)} {\color{red}{\int{\frac{1}{x} d x}}} = \ln{\left(2 \right)} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Oleh karena itu,
$$\int{\frac{\ln{\left(2 \right)}}{x} d x} = \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\ln{\left(2 \right)}}{x} d x} = \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}+C$$
Jawaban
$$$\int \frac{\ln\left(2\right)}{x}\, dx = \ln\left(2\right) \ln\left(\left|{x}\right|\right) + C$$$A