Integral of $$$\frac{\ln\left(2\right)}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\ln\left(2\right)}{x}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\ln{\left(2 \right)}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}{\int{\frac{\ln{\left(2 \right)}}{x} d x}}} = {\color{red}{\ln{\left(2 \right)} \int{\frac{1}{x} d x}}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\ln{\left(2 \right)} {\color{red}{\int{\frac{1}{x} d x}}} = \ln{\left(2 \right)} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Therefore,
$$\int{\frac{\ln{\left(2 \right)}}{x} d x} = \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{\ln{\left(2 \right)}}{x} d x} = \ln{\left(2 \right)} \ln{\left(\left|{x}\right| \right)}+C$$
Answer
$$$\int \frac{\ln\left(2\right)}{x}\, dx = \ln\left(2\right) \ln\left(\left|{x}\right|\right) + C$$$A