Ολοκλήρωμα του $$$1 - a$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$1 - a$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(1 - a\right)\, da$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(1 - a\right)d a}}} = {\color{red}{\left(\int{1 d a} - \int{a d a}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, da = a c$$$ με $$$c=1$$$:

$$- \int{a d a} + {\color{red}{\int{1 d a}}} = - \int{a d a} + {\color{red}{a}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$a - {\color{red}{\int{a d a}}}=a - {\color{red}{\frac{a^{1 + 1}}{1 + 1}}}=a - {\color{red}{\left(\frac{a^{2}}{2}\right)}}$$

Επομένως,

$$\int{\left(1 - a\right)d a} = - \frac{a^{2}}{2} + a$$

Απλοποιήστε:

$$\int{\left(1 - a\right)d a} = \frac{a \left(2 - a\right)}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(1 - a\right)d a} = \frac{a \left(2 - a\right)}{2}+C$$

Απάντηση

$$$\int \left(1 - a\right)\, da = \frac{a \left(2 - a\right)}{2} + C$$$A


Please try a new game Rotatly