Integralen av $$$1 - a$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(1 - a\right)\, da$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(1 - a\right)d a}}} = {\color{red}{\left(\int{1 d a} - \int{a d a}\right)}}$$
Tillämpa konstantregeln $$$\int c\, da = a c$$$ med $$$c=1$$$:
$$- \int{a d a} + {\color{red}{\int{1 d a}}} = - \int{a d a} + {\color{red}{a}}$$
Tillämpa potensregeln $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:
$$a - {\color{red}{\int{a d a}}}=a - {\color{red}{\frac{a^{1 + 1}}{1 + 1}}}=a - {\color{red}{\left(\frac{a^{2}}{2}\right)}}$$
Alltså,
$$\int{\left(1 - a\right)d a} = - \frac{a^{2}}{2} + a$$
Förenkla:
$$\int{\left(1 - a\right)d a} = \frac{a \left(2 - a\right)}{2}$$
Lägg till integrationskonstanten:
$$\int{\left(1 - a\right)d a} = \frac{a \left(2 - a\right)}{2}+C$$
Svar
$$$\int \left(1 - a\right)\, da = \frac{a \left(2 - a\right)}{2} + C$$$A