Ολοκλήρωμα του $$$- x \sin^{3}{\left(4 \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- x \sin^{3}{\left(4 \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- x \sin^{3}{\left(4 \right)}\right)\, dx$$$.

Οι τριγωνομετρικές συναρτήσεις αναμένουν το όρισμα σε ακτίνια. Για να εισαγάγετε το όρισμα σε μοίρες, πολλαπλασιάστε το με pi/180, π.χ. γράψτε 45° ως 45*pi/180, ή χρησιμοποιήστε την κατάλληλη συνάρτηση προσθέτοντας 'd', π.χ. γράψτε sin(45°) ως sind(45).

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=- \sin^{3}{\left(4 \right)}$$$ και $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{\left(- x \sin^{3}{\left(4 \right)}\right)d x}}} = {\color{red}{\left(- \sin^{3}{\left(4 \right)} \int{x d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$- \sin^{3}{\left(4 \right)} {\color{red}{\int{x d x}}}=- \sin^{3}{\left(4 \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \sin^{3}{\left(4 \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Επομένως,

$$\int{\left(- x \sin^{3}{\left(4 \right)}\right)d x} = - \frac{x^{2} \sin^{3}{\left(4 \right)}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- x \sin^{3}{\left(4 \right)}\right)d x} = - \frac{x^{2} \sin^{3}{\left(4 \right)}}{2}+C$$

Απάντηση

$$$\int \left(- x \sin^{3}{\left(4 \right)}\right)\, dx = - \frac{x^{2} \sin^{3}{\left(4 \right)}}{2} + C$$$A


Please try a new game Rotatly