Integral of $$$- x \sin^{3}{\left(4 \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- x \sin^{3}{\left(4 \right)}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=- \sin^{3}{\left(4 \right)}$$$ and $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{\left(- x \sin^{3}{\left(4 \right)}\right)d x}}} = {\color{red}{\left(- \sin^{3}{\left(4 \right)} \int{x d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$- \sin^{3}{\left(4 \right)} {\color{red}{\int{x d x}}}=- \sin^{3}{\left(4 \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \sin^{3}{\left(4 \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Therefore,
$$\int{\left(- x \sin^{3}{\left(4 \right)}\right)d x} = - \frac{x^{2} \sin^{3}{\left(4 \right)}}{2}$$
Add the constant of integration:
$$\int{\left(- x \sin^{3}{\left(4 \right)}\right)d x} = - \frac{x^{2} \sin^{3}{\left(4 \right)}}{2}+C$$
Answer
$$$\int \left(- x \sin^{3}{\left(4 \right)}\right)\, dx = - \frac{x^{2} \sin^{3}{\left(4 \right)}}{2} + C$$$A