Ολοκλήρωμα του $$$\frac{1}{1 - y^{2}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{1 - y^{2}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{1 - y^{2}}\, dy$$$.

Λύση

Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):

$${\color{red}{\int{\frac{1}{1 - y^{2}} d y}}} = {\color{red}{\int{\left(\frac{1}{2 \left(y + 1\right)} - \frac{1}{2 \left(y - 1\right)}\right)d y}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{1}{2 \left(y + 1\right)} - \frac{1}{2 \left(y - 1\right)}\right)d y}}} = {\color{red}{\left(- \int{\frac{1}{2 \left(y - 1\right)} d y} + \int{\frac{1}{2 \left(y + 1\right)} d y}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(y \right)} = \frac{1}{y + 1}$$$:

$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + {\color{red}{\int{\frac{1}{2 \left(y + 1\right)} d y}}} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + {\color{red}{\left(\frac{\int{\frac{1}{y + 1} d y}}{2}\right)}}$$

Έστω $$$u=y + 1$$$.

Τότε $$$du=\left(y + 1\right)^{\prime }dy = 1 dy$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dy = du$$$.

Επομένως,

$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{y + 1} d y}}}}{2} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Θυμηθείτε ότι $$$u=y + 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(y - 1\right)} d y} = \frac{\ln{\left(\left|{{\color{red}{\left(y + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(y - 1\right)} d y}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(y \right)} = \frac{1}{y - 1}$$$:

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(y - 1\right)} d y}}} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{y - 1} d y}}{2}\right)}}$$

Έστω $$$u=y - 1$$$.

Τότε $$$du=\left(y - 1\right)^{\prime }dy = 1 dy$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dy = du$$$.

Το ολοκλήρωμα γίνεται

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{y - 1} d y}}}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Θυμηθείτε ότι $$$u=y - 1$$$:

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(y - 1\right)}}}\right| \right)}}{2}$$

Επομένως,

$$\int{\frac{1}{1 - y^{2}} d y} = - \frac{\ln{\left(\left|{y - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2}$$

Απλοποιήστε:

$$\int{\frac{1}{1 - y^{2}} d y} = \frac{- \ln{\left(\left|{y - 1}\right| \right)} + \ln{\left(\left|{y + 1}\right| \right)}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{1 - y^{2}} d y} = \frac{- \ln{\left(\left|{y - 1}\right| \right)} + \ln{\left(\left|{y + 1}\right| \right)}}{2}+C$$

Απάντηση

$$$\int \frac{1}{1 - y^{2}}\, dy = \frac{- \ln\left(\left|{y - 1}\right|\right) + \ln\left(\left|{y + 1}\right|\right)}{2} + C$$$A


Please try a new game Rotatly