Integral of $$$\frac{1}{1 - y^{2}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{1 - y^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{1 - y^{2}}\, dy$$$.

Solution

Perform partial fraction decomposition (steps can be seen »):

$${\color{red}{\int{\frac{1}{1 - y^{2}} d y}}} = {\color{red}{\int{\left(\frac{1}{2 \left(y + 1\right)} - \frac{1}{2 \left(y - 1\right)}\right)d y}}}$$

Integrate term by term:

$${\color{red}{\int{\left(\frac{1}{2 \left(y + 1\right)} - \frac{1}{2 \left(y - 1\right)}\right)d y}}} = {\color{red}{\left(- \int{\frac{1}{2 \left(y - 1\right)} d y} + \int{\frac{1}{2 \left(y + 1\right)} d y}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(y \right)} = \frac{1}{y + 1}$$$:

$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + {\color{red}{\int{\frac{1}{2 \left(y + 1\right)} d y}}} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + {\color{red}{\left(\frac{\int{\frac{1}{y + 1} d y}}{2}\right)}}$$

Let $$$u=y + 1$$$.

Then $$$du=\left(y + 1\right)^{\prime }dy = 1 dy$$$ (steps can be seen »), and we have that $$$dy = du$$$.

The integral becomes

$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{y + 1} d y}}}}{2} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recall that $$$u=y + 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(y - 1\right)} d y} = \frac{\ln{\left(\left|{{\color{red}{\left(y + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(y - 1\right)} d y}$$

Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(y \right)} = \frac{1}{y - 1}$$$:

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(y - 1\right)} d y}}} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{y - 1} d y}}{2}\right)}}$$

Let $$$u=y - 1$$$.

Then $$$du=\left(y - 1\right)^{\prime }dy = 1 dy$$$ (steps can be seen »), and we have that $$$dy = du$$$.

The integral becomes

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{y - 1} d y}}}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recall that $$$u=y - 1$$$:

$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(y - 1\right)}}}\right| \right)}}{2}$$

Therefore,

$$\int{\frac{1}{1 - y^{2}} d y} = - \frac{\ln{\left(\left|{y - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2}$$

Simplify:

$$\int{\frac{1}{1 - y^{2}} d y} = \frac{- \ln{\left(\left|{y - 1}\right| \right)} + \ln{\left(\left|{y + 1}\right| \right)}}{2}$$

Add the constant of integration:

$$\int{\frac{1}{1 - y^{2}} d y} = \frac{- \ln{\left(\left|{y - 1}\right| \right)} + \ln{\left(\left|{y + 1}\right| \right)}}{2}+C$$

Answer

$$$\int \frac{1}{1 - y^{2}}\, dy = \frac{- \ln\left(\left|{y - 1}\right|\right) + \ln\left(\left|{y + 1}\right|\right)}{2} + C$$$A


Please try a new game Rotatly