Integral dari $$$\frac{1}{1 - y^{2}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{1 - y^{2}}\, dy$$$.
Solusi
Lakukan dekomposisi pecahan parsial (langkah-langkah dapat dilihat di »):
$${\color{red}{\int{\frac{1}{1 - y^{2}} d y}}} = {\color{red}{\int{\left(\frac{1}{2 \left(y + 1\right)} - \frac{1}{2 \left(y - 1\right)}\right)d y}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(\frac{1}{2 \left(y + 1\right)} - \frac{1}{2 \left(y - 1\right)}\right)d y}}} = {\color{red}{\left(- \int{\frac{1}{2 \left(y - 1\right)} d y} + \int{\frac{1}{2 \left(y + 1\right)} d y}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(y \right)} = \frac{1}{y + 1}$$$:
$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + {\color{red}{\int{\frac{1}{2 \left(y + 1\right)} d y}}} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + {\color{red}{\left(\frac{\int{\frac{1}{y + 1} d y}}{2}\right)}}$$
Misalkan $$$u=y + 1$$$.
Kemudian $$$du=\left(y + 1\right)^{\prime }dy = 1 dy$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dy = du$$$.
Oleh karena itu,
$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{y + 1} d y}}}}{2} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{2 \left(y - 1\right)} d y} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Ingat bahwa $$$u=y + 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(y - 1\right)} d y} = \frac{\ln{\left(\left|{{\color{red}{\left(y + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(y - 1\right)} d y}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(y \right)} = \frac{1}{y - 1}$$$:
$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(y - 1\right)} d y}}} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{y - 1} d y}}{2}\right)}}$$
Misalkan $$$u=y - 1$$$.
Kemudian $$$du=\left(y - 1\right)^{\prime }dy = 1 dy$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dy = du$$$.
Integral tersebut dapat ditulis ulang sebagai
$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{y - 1} d y}}}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Ingat bahwa $$$u=y - 1$$$:
$$\frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(y - 1\right)}}}\right| \right)}}{2}$$
Oleh karena itu,
$$\int{\frac{1}{1 - y^{2}} d y} = - \frac{\ln{\left(\left|{y - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{y + 1}\right| \right)}}{2}$$
Sederhanakan:
$$\int{\frac{1}{1 - y^{2}} d y} = \frac{- \ln{\left(\left|{y - 1}\right| \right)} + \ln{\left(\left|{y + 1}\right| \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{1 - y^{2}} d y} = \frac{- \ln{\left(\left|{y - 1}\right| \right)} + \ln{\left(\left|{y + 1}\right| \right)}}{2}+C$$
Jawaban
$$$\int \frac{1}{1 - y^{2}}\, dy = \frac{- \ln\left(\left|{y - 1}\right|\right) + \ln\left(\left|{y + 1}\right|\right)}{2} + C$$$A