Integral von $$$x^{2} \left(2 x^{3} + 3\right)^{3}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int x^{2} \left(2 x^{3} + 3\right)^{3}\, dx$$$.
Lösung
Sei $$$u=2 x^{3} + 3$$$.
Dann $$$du=\left(2 x^{3} + 3\right)^{\prime }dx = 6 x^{2} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$x^{2} dx = \frac{du}{6}$$$.
Somit,
$${\color{red}{\int{x^{2} \left(2 x^{3} + 3\right)^{3} d x}}} = {\color{red}{\int{\frac{u^{3}}{6} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{6}$$$ und $$$f{\left(u \right)} = u^{3}$$$ an:
$${\color{red}{\int{\frac{u^{3}}{6} d u}}} = {\color{red}{\left(\frac{\int{u^{3} d u}}{6}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=3$$$ an:
$$\frac{{\color{red}{\int{u^{3} d u}}}}{6}=\frac{{\color{red}{\frac{u^{1 + 3}}{1 + 3}}}}{6}=\frac{{\color{red}{\left(\frac{u^{4}}{4}\right)}}}{6}$$
Zur Erinnerung: $$$u=2 x^{3} + 3$$$:
$$\frac{{\color{red}{u}}^{4}}{24} = \frac{{\color{red}{\left(2 x^{3} + 3\right)}}^{4}}{24}$$
Daher,
$$\int{x^{2} \left(2 x^{3} + 3\right)^{3} d x} = \frac{\left(2 x^{3} + 3\right)^{4}}{24}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{x^{2} \left(2 x^{3} + 3\right)^{3} d x} = \frac{\left(2 x^{3} + 3\right)^{4}}{24}+C$$
Antwort
$$$\int x^{2} \left(2 x^{3} + 3\right)^{3}\, dx = \frac{\left(2 x^{3} + 3\right)^{4}}{24} + C$$$A