Integral von $$$x \cos{\left(\pi n x \right)}$$$ nach $$$x$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int x \cos{\left(\pi n x \right)}\, dx$$$.
Lösung
Für das Integral $$$\int{x \cos{\left(\pi n x \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=x$$$ und $$$\operatorname{dv}=\cos{\left(\pi n x \right)} dx$$$.
Dann gilt $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{\cos{\left(\pi n x \right)} d x}=\frac{\sin{\left(\pi n x \right)}}{\pi n}$$$ (Rechenschritte siehe »).
Das Integral wird zu
$${\color{red}{\int{x \cos{\left(\pi n x \right)} d x}}}={\color{red}{\left(x \cdot \frac{\sin{\left(\pi n x \right)}}{\pi n}-\int{\frac{\sin{\left(\pi n x \right)}}{\pi n} \cdot 1 d x}\right)}}={\color{red}{\left(- \int{\frac{\sin{\left(\pi n x \right)}}{\pi n} d x} + \frac{x \sin{\left(\pi n x \right)}}{\pi n}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{\pi n}$$$ und $$$f{\left(x \right)} = \sin{\left(\pi n x \right)}$$$ an:
$$- {\color{red}{\int{\frac{\sin{\left(\pi n x \right)}}{\pi n} d x}}} + \frac{x \sin{\left(\pi n x \right)}}{\pi n} = - {\color{red}{\frac{\int{\sin{\left(\pi n x \right)} d x}}{\pi n}}} + \frac{x \sin{\left(\pi n x \right)}}{\pi n}$$
Sei $$$u=\pi n x$$$.
Dann $$$du=\left(\pi n x\right)^{\prime }dx = \pi n dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{\pi n}$$$.
Das Integral lässt sich umschreiben als
$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\sin{\left(\pi n x \right)} d x}}}}{\pi n} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi n} d u}}}}{\pi n}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{\pi n}$$$ und $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ an:
$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi n} d u}}}}{\pi n} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi n}}}}{\pi n}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi^{2} n^{2}} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi^{2} n^{2}}$$
Zur Erinnerung: $$$u=\pi n x$$$:
$$\frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left({\color{red}{u}} \right)}}{\pi^{2} n^{2}} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left({\color{red}{\pi n x}} \right)}}{\pi^{2} n^{2}}$$
Daher,
$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{x \sin{\left(\pi n x \right)}}{\pi n} + \frac{\cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}$$
Vereinfachen:
$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{x \cos{\left(\pi n x \right)} d x} = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}+C$$
Antwort
$$$\int x \cos{\left(\pi n x \right)}\, dx = \frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}} + C$$$A