Integral von $$$\sin^{4}{\left(2 x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \sin^{4}{\left(2 x \right)}\, dx$$$.
Lösung
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Daher,
$${\color{red}{\int{\sin^{4}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{4}{\left(u \right)}}{2} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \sin^{4}{\left(u \right)}$$$ an:
$${\color{red}{\int{\frac{\sin^{4}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin^{4}{\left(u \right)} d u}}{2}\right)}}$$
Wende die Potenzreduktionsformel $$$\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$ mit $$$\alpha= u $$$ an:
$$\frac{{\color{red}{\int{\sin^{4}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{8}$$$ und $$$f{\left(u \right)} = - 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3$$$ an:
$$\frac{{\color{red}{\int{\left(- \frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}{8}\right)}}}{2}$$
Gliedweise integrieren:
$$\frac{{\color{red}{\int{\left(- 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}}}{16} = \frac{{\color{red}{\left(\int{3 d u} - \int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u}\right)}}}{16}$$
Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=3$$$ an:
$$- \frac{\int{4 \cos{\left(2 u \right)} d u}}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} + \frac{{\color{red}{\int{3 d u}}}}{16} = - \frac{\int{4 \cos{\left(2 u \right)} d u}}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} + \frac{{\color{red}{\left(3 u\right)}}}{16}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=4$$$ und $$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$ an:
$$\frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\int{4 \cos{\left(2 u \right)} d u}}}}{16} = \frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\left(4 \int{\cos{\left(2 u \right)} d u}\right)}}}{16}$$
Sei $$$v=2 u$$$.
Dann $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = \frac{dv}{2}$$$.
Daher,
$$\frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{4} = \frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{4}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ an:
$$\frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{4} = \frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{4}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{8} = \frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{{\color{red}{\sin{\left(v \right)}}}}{8}$$
Zur Erinnerung: $$$v=2 u$$$:
$$\frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{\sin{\left({\color{red}{v}} \right)}}{8} = \frac{3 u}{16} + \frac{\int{\cos{\left(4 u \right)} d u}}{16} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{8}$$
Sei $$$v=4 u$$$.
Dann $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = \frac{dv}{4}$$$.
Daher,
$$\frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{{\color{red}{\int{\cos{\left(4 u \right)} d u}}}}{16} = \frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{16}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=\frac{1}{4}$$$ und $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ an:
$$\frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}}{16} = \frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}}{16}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{64} = \frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{{\color{red}{\sin{\left(v \right)}}}}{64}$$
Zur Erinnerung: $$$v=4 u$$$:
$$\frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{\sin{\left({\color{red}{v}} \right)}}{64} = \frac{3 u}{16} - \frac{\sin{\left(2 u \right)}}{8} + \frac{\sin{\left({\color{red}{\left(4 u\right)}} \right)}}{64}$$
Zur Erinnerung: $$$u=2 x$$$:
$$- \frac{\sin{\left(2 {\color{red}{u}} \right)}}{8} + \frac{\sin{\left(4 {\color{red}{u}} \right)}}{64} + \frac{3 {\color{red}{u}}}{16} = - \frac{\sin{\left(2 {\color{red}{\left(2 x\right)}} \right)}}{8} + \frac{\sin{\left(4 {\color{red}{\left(2 x\right)}} \right)}}{64} + \frac{3 {\color{red}{\left(2 x\right)}}}{16}$$
Daher,
$$\int{\sin^{4}{\left(2 x \right)} d x} = \frac{3 x}{8} - \frac{\sin{\left(4 x \right)}}{8} + \frac{\sin{\left(8 x \right)}}{64}$$
Vereinfachen:
$$\int{\sin^{4}{\left(2 x \right)} d x} = \frac{24 x - 8 \sin{\left(4 x \right)} + \sin{\left(8 x \right)}}{64}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\sin^{4}{\left(2 x \right)} d x} = \frac{24 x - 8 \sin{\left(4 x \right)} + \sin{\left(8 x \right)}}{64}+C$$
Antwort
$$$\int \sin^{4}{\left(2 x \right)}\, dx = \frac{24 x - 8 \sin{\left(4 x \right)} + \sin{\left(8 x \right)}}{64} + C$$$A