Integral von $$$\sec^{2}{\left(\theta \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \sec^{2}{\left(\theta \right)}\, d\theta$$$.
Lösung
Das Integral von $$$\sec^{2}{\left(\theta \right)}$$$ ist $$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\tan{\left(\theta \right)}}}$$
Daher,
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}+C$$
Antwort
$$$\int \sec^{2}{\left(\theta \right)}\, d\theta = \tan{\left(\theta \right)} + C$$$A