Integral von $$$\cos^{5}{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \cos^{5}{\left(x \right)}\, dx$$$.
Lösung
Klammern Sie einen Kosinus aus und drücken Sie alles Übrige in Abhängigkeit vom Sinus aus, mithilfe der Formel $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ mit $$$\alpha=x$$$.:
$${\color{red}{\int{\cos^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} d x}}}$$
Sei $$$u=\sin{\left(x \right)}$$$.
Dann $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\cos{\left(x \right)} dx = du$$$.
Somit,
$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}}$$
Expand the expression:
$${\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}} = {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}}$$
Gliedweise integrieren:
$${\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{2 u^{2} d u} + \int{u^{4} d u}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=1$$$ an:
$$- \int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{\int{1 d u}}} = - \int{2 u^{2} d u} + \int{u^{4} d u} + {\color{red}{u}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=4$$$ an:
$$u - \int{2 u^{2} d u} + {\color{red}{\int{u^{4} d u}}}=u - \int{2 u^{2} d u} + {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=u - \int{2 u^{2} d u} + {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=2$$$ und $$$f{\left(u \right)} = u^{2}$$$ an:
$$\frac{u^{5}}{5} + u - {\color{red}{\int{2 u^{2} d u}}} = \frac{u^{5}}{5} + u - {\color{red}{\left(2 \int{u^{2} d u}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:
$$\frac{u^{5}}{5} + u - 2 {\color{red}{\int{u^{2} d u}}}=\frac{u^{5}}{5} + u - 2 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=\frac{u^{5}}{5} + u - 2 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Zur Erinnerung: $$$u=\sin{\left(x \right)}$$$:
$${\color{red}{u}} - \frac{2 {\color{red}{u}}^{3}}{3} + \frac{{\color{red}{u}}^{5}}{5} = {\color{red}{\sin{\left(x \right)}}} - \frac{2 {\color{red}{\sin{\left(x \right)}}}^{3}}{3} + \frac{{\color{red}{\sin{\left(x \right)}}}^{5}}{5}$$
Daher,
$$\int{\cos^{5}{\left(x \right)} d x} = \frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\cos^{5}{\left(x \right)} d x} = \frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}+C$$
Antwort
$$$\int \cos^{5}{\left(x \right)}\, dx = \left(\frac{\sin^{5}{\left(x \right)}}{5} - \frac{2 \sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}\right) + C$$$A