Integral von $$$\frac{2 \sin{\left(x \right)}}{5}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{2 \sin{\left(x \right)}}{5}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{2}{5}$$$ und $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ an:
$${\color{red}{\int{\frac{2 \sin{\left(x \right)}}{5} d x}}} = {\color{red}{\left(\frac{2 \int{\sin{\left(x \right)} d x}}{5}\right)}}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{2 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{5} = \frac{2 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{5}$$
Daher,
$$\int{\frac{2 \sin{\left(x \right)}}{5} d x} = - \frac{2 \cos{\left(x \right)}}{5}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{2 \sin{\left(x \right)}}{5} d x} = - \frac{2 \cos{\left(x \right)}}{5}+C$$
Antwort
$$$\int \frac{2 \sin{\left(x \right)}}{5}\, dx = - \frac{2 \cos{\left(x \right)}}{5} + C$$$A