Integral von $$$\frac{\sqrt{x^{2} - 1}}{x}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sqrt{x^{2} - 1}}{x}\, dx$$$.
Lösung
Sei $$$x=\cosh{\left(u \right)}$$$.
Dann $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (die Schritte sind » zu sehen).
Somit folgt, dass $$$u=\operatorname{acosh}{\left(x \right)}$$$.
Somit,
$$$\frac{\sqrt{x^{2} - 1}}{x} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}$$$
Verwenden Sie die Identität $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$
Setzen wir $$$\sinh{\left( u \right)} \ge 0$$$ voraus, so erhalten wir Folgendes:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$
Das Integral wird zu
$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$
Multiplizieren Sie Zähler und Nenner mit einem hyperbolischen Kosinus und drücken Sie alles andere in Abhängigkeit vom hyperbolischen Sinus aus, mithilfe der Formel $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$ mit $$$\alpha= u $$$:
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$
Sei $$$v=\sinh{\left(u \right)}$$$.
Dann $$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (die Schritte sind » zu sehen), und es gilt $$$\cosh{\left(u \right)} du = dv$$$.
Somit,
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
Forme den Bruch um und zerlege ihn:
$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
Gliedweise integrieren:
$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, dv = c v$$$ mit $$$c=1$$$ an:
$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$
Das Integral von $$$\frac{1}{v^{2} + 1}$$$ ist $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
Zur Erinnerung: $$$v=\sinh{\left(u \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + {\color{red}{\sinh{\left(u \right)}}}$$
Zur Erinnerung: $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$\sinh{\left({\color{red}{u}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)} = \sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)} \right)}$$
Daher,
$$\int{\frac{\sqrt{x^{2} - 1}}{x} d x} = \sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sqrt{x^{2} - 1}}{x} d x} = \sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}+C$$
Antwort
$$$\int \frac{\sqrt{x^{2} - 1}}{x}\, dx = \left(\sqrt{x - 1} \sqrt{x + 1} - \operatorname{atan}{\left(\sqrt{x - 1} \sqrt{x + 1} \right)}\right) + C$$$A