Integral von $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$

Der Rechner bestimmt das Integral/die Stammfunktion von $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$ und zeigt die Rechenschritte an.

Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie $$$dx$$$, $$$dy$$$ usw.
Für automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx$$$.

Lösung

Die Eingabe wird umgeschrieben: $$$\int{\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}} d x}=\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}$$$.

Sei $$$u=\sqrt{x}$$$.

Dann $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

Das Integral wird zu

$${\color{red}{\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}}} = {\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=2$$$ und $$$f{\left(u \right)} = \frac{\sqrt{u^{2} - 1}}{u^{4}}$$$ an:

$${\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}} = {\color{red}{\left(2 \int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}\right)}}$$

Sei $$$u=\cosh{\left(v \right)}$$$.

Dann $$$du=\left(\cosh{\left(v \right)}\right)^{\prime }dv = \sinh{\left(v \right)} dv$$$ (die Schritte sind » zu sehen).

Somit folgt, dass $$$v=\operatorname{acosh}{\left(u \right)}$$$.

Somit,

$$$\frac{\sqrt{ u ^{2} - 1}}{ u ^{4}} = \frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}$$$

Verwenden Sie die Identität $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:

$$$\frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}=\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}}$$$

Setzen wir $$$\sinh{\left( v \right)} \ge 0$$$ voraus, so erhalten wir Folgendes:

$$$\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}} = \frac{\sinh{\left( v \right)}}{\cosh^{4}{\left( v \right)}}$$$

Somit,

$$2 {\color{red}{\int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}}} = 2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}}$$

Multiplizieren Sie Zähler und Nenner mit $$$\cosh^{2}{\left( v \right)}$$$ und wandeln Sie $$$\frac{\sinh^{2}{\left( v \right)}}{\cosh^{2}{\left( v \right)}}$$$ in $$$\tanh^{2}{\left( v \right)}$$$ um:

$$2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}}$$

Sei $$$w=\tanh{\left(v \right)}$$$.

Dann $$$dw=\left(\tanh{\left(v \right)}\right)^{\prime }dv = \operatorname{sech}^{2}{\left(v \right)} dv$$$ (die Schritte sind » zu sehen), und es gilt $$$\operatorname{sech}^{2}{\left(v \right)} dv = dw$$$.

Das Integral wird zu

$$2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{w^{2} d w}}}$$

Wenden Sie die Potenzregel $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:

$$2 {\color{red}{\int{w^{2} d w}}}=2 {\color{red}{\frac{w^{1 + 2}}{1 + 2}}}=2 {\color{red}{\left(\frac{w^{3}}{3}\right)}}$$

Zur Erinnerung: $$$w=\tanh{\left(v \right)}$$$:

$$\frac{2 {\color{red}{w}}^{3}}{3} = \frac{2 {\color{red}{\tanh{\left(v \right)}}}^{3}}{3}$$

Zur Erinnerung: $$$v=\operatorname{acosh}{\left(u \right)}$$$:

$$\frac{2 \tanh^{3}{\left({\color{red}{v}} \right)}}{3} = \frac{2 \tanh^{3}{\left({\color{red}{\operatorname{acosh}{\left(u \right)}}} \right)}}{3}$$

Zur Erinnerung: $$$u=\sqrt{x}$$$:

$$\frac{2 {\color{red}{u}}^{-3} \left(1 + {\color{red}{u}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{u}}\right)^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sqrt{x}}}^{-3} \left(1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}}}{3}$$

Daher,

$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}$$

Fügen Sie die Integrationskonstante hinzu:

$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}+C$$

Antwort

$$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}} + C$$$A


Please try a new game Rotatly