Integral von $$$\sin{\left(x \right)} \cos{\left(2 \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \sin{\left(x \right)} \cos{\left(2 \right)}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\cos{\left(2 \right)}$$$ und $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ an:
$${\color{red}{\int{\sin{\left(x \right)} \cos{\left(2 \right)} d x}}} = {\color{red}{\cos{\left(2 \right)} \int{\sin{\left(x \right)} d x}}}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\cos{\left(2 \right)} {\color{red}{\int{\sin{\left(x \right)} d x}}} = \cos{\left(2 \right)} {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Daher,
$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} d x} = - \cos{\left(2 \right)} \cos{\left(x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} d x} = - \cos{\left(2 \right)} \cos{\left(x \right)}+C$$
Antwort
$$$\int \sin{\left(x \right)} \cos{\left(2 \right)}\, dx = - \cos{\left(2 \right)} \cos{\left(x \right)} + C$$$A