Integral von $$$\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx$$$.
Lösung
Gliedweise integrieren:
$${\color{red}{\int{\left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
Multiplizieren Sie Zähler und Nenner mit einem Sinus und drücken Sie alles andere durch den Kosinus aus, mithilfe der Formel $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ mit $$$\alpha=x$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x}}}$$
Sei $$$u=\cos{\left(x \right)}$$$.
Dann $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\sin{\left(x \right)} dx = - du$$$.
Das Integral lässt sich umschreiben als
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\left(- \frac{u^{2}}{1 - u^{2}}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-1$$$ und $$$f{\left(u \right)} = \frac{u^{2}}{1 - u^{2}}$$$ an:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\left(- \frac{u^{2}}{1 - u^{2}}\right)d u}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\left(- \int{\frac{u^{2}}{1 - u^{2}} d u}\right)}}$$
Da der Grad des Zählers mindestens so groß ist wie der des Nenners, führen Sie eine Polynomdivision durch (die Schritte sind » zu sehen):
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$
Gliedweise integrieren:
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=1$$$ an:
$$\int{\sin{\left(x \right)} d x} + \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{\int{1 d u}}} = \int{\sin{\left(x \right)} d x} + \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{u}}$$
Partialbruchzerlegung durchführen (die Schritte sind » zu sehen):
$$- u + \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = - u + \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$
Gliedweise integrieren:
$$- u + \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = - u + \int{\sin{\left(x \right)} d x} + {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \frac{1}{u + 1}$$$ an:
$$- u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = - u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$
Sei $$$v=u + 1$$$.
Dann $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = dv$$$.
Somit,
$$- u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = - u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
Das Integral von $$$\frac{1}{v}$$$ ist $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$v=u + 1$$$:
$$- u + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} = - u + \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \frac{1}{u - 1}$$$ an:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$
Sei $$$v=u - 1$$$.
Dann $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = dv$$$.
Daher,
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
Das Integral von $$$\frac{1}{v}$$$ ist $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$v=u - 1$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x}$$
Zur Erinnerung: $$$u=\cos{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{u}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{\cos{\left(x \right)}}}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - \cos{\left(x \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - \cos{\left(x \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Daher,
$$\int{\left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - 2 \cos{\left(x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - 2 \cos{\left(x \right)}+C$$
Antwort
$$$\int \left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx = \left(- \frac{\ln\left(\left|{\cos{\left(x \right)} - 1}\right|\right)}{2} + \frac{\ln\left(\left|{\cos{\left(x \right)} + 1}\right|\right)}{2} - 2 \cos{\left(x \right)}\right) + C$$$A