Integral von $$$\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Lösung
Schreiben Sie den Integranden um:
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{2 \cos{\left(x \right)} d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=2$$$ und $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ an:
$${\color{red}{\int{2 \cos{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(x \right)} d x}\right)}}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(x \right)} d x}}} = 2 {\color{red}{\sin{\left(x \right)}}}$$
Daher,
$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = 2 \sin{\left(x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}} d x} = 2 \sin{\left(x \right)}+C$$
Antwort
$$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}}\, dx = 2 \sin{\left(x \right)} + C$$$A