Integral von $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx$$$.
Lösung
Wende die Potenzreduktionsformel $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ mit $$$\alpha=x$$$ an:
$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}$$$ an:
$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2}$$
Gliedweise integrieren:
$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{2}$$
Sei $$$u=\sin{\left(2 x \right)}$$$.
Dann $$$du=\left(\sin{\left(2 x \right)}\right)^{\prime }dx = 2 \cos{\left(2 x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\cos{\left(2 x \right)} dx = \frac{du}{2}$$$.
Somit,
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = u$$$ an:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{u d u}}{2}\right)}}}{2}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{u d u}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{4}$$
Zur Erinnerung: $$$u=\sin{\left(2 x \right)}$$$:
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{u}}^{2}}{8} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(2 x \right)}}}^{2}}{8}$$
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Somit,
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ an:
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Zur Erinnerung: $$$u=2 x$$$:
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Daher,
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4}$$
Vereinfachen:
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2} - \frac{1}{4}$$
Fügen Sie die Integrationskonstante hinzu (und entfernen Sie die Konstante aus dem Ausdruck):
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2}+C$$
Antwort
$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx = \frac{\sin^{4}{\left(x \right)}}{2} + C$$$A