Integral von $$$\frac{\sin{\left(2 x \right)}}{2}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sin{\left(2 x \right)}}{2}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ an:
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}$$
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Somit,
$$\frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ an:
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Zur Erinnerung: $$$u=2 x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Daher,
$$\int{\frac{\sin{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{4}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sin{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{4}+C$$
Antwort
$$$\int \frac{\sin{\left(2 x \right)}}{2}\, dx = - \frac{\cos{\left(2 x \right)}}{4} + C$$$A