Integral von $$$\sin{\left(\ln\left(2 x\right) \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \sin{\left(\ln\left(2 x\right) \right)}\, dx$$$.
Lösung
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(\ln{\left(u \right)} \right)}}{2} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \sin{\left(\ln{\left(u \right)} \right)}$$$ an:
$${\color{red}{\int{\frac{\sin{\left(\ln{\left(u \right)} \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}{2}\right)}}$$
Für das Integral $$$\int{\sin{\left(\ln{\left(u \right)} \right)} d u}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Seien $$$\operatorname{\kappa}=\sin{\left(\ln{\left(u \right)} \right)}$$$ und $$$\operatorname{dv}=du$$$.
Dann gilt $$$\operatorname{d\kappa}=\left(\sin{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=\frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{1 d u}=u$$$ (Rechenschritte siehe »).
Das Integral wird zu
$$\frac{{\color{red}{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}}}{2}=\frac{{\color{red}{\left(\sin{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} d u}\right)}}}{2}=\frac{{\color{red}{\left(u \sin{\left(\ln{\left(u \right)} \right)} - \int{\cos{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{2}$$
Für das Integral $$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$.
Seien $$$\operatorname{\kappa}=\cos{\left(\ln{\left(u \right)} \right)}$$$ und $$$\operatorname{dv}=du$$$.
Dann gilt $$$\operatorname{d\kappa}=\left(\cos{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{1 d u}=u$$$ (Rechenschritte siehe »).
Also,
$$\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{2}=\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{{\color{red}{\left(\cos{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \left(- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u}\right) d u}\right)}}}{2}=\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{{\color{red}{\left(u \cos{\left(\ln{\left(u \right)} \right)} - \int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}\right)}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-1$$$ und $$$f{\left(u \right)} = \sin{\left(\ln{\left(u \right)} \right)}$$$ an:
$$\frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{2} + \frac{{\color{red}{\int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}}}}{2} = \frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{2} + \frac{{\color{red}{\left(- \int{\sin{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{2}$$
Wir sind bei einem Integral angelangt, das wir bereits gesehen haben.
Somit haben wir die folgende einfache Gleichung für das Integral erhalten:
$$\frac{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}{2} = \frac{u \sin{\left(\ln{\left(u \right)} \right)}}{2} - \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{2} - \frac{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}{2}$$
Lösen wir es, erhalten wir, dass
$$\int{\sin{\left(\ln{\left(u \right)} \right)} d u} = \frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} - \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}$$
Somit,
$$\frac{{\color{red}{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}}}{2} = \frac{{\color{red}{\left(\frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} - \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}\right)}}}{2}$$
Zur Erinnerung: $$$u=2 x$$$:
$$\frac{{\color{red}{u}} \left(\sin{\left(\ln{\left({\color{red}{u}} \right)} \right)} - \cos{\left(\ln{\left({\color{red}{u}} \right)} \right)}\right)}{4} = \frac{{\color{red}{\left(2 x\right)}} \left(\sin{\left(\ln{\left({\color{red}{\left(2 x\right)}} \right)} \right)} - \cos{\left(\ln{\left({\color{red}{\left(2 x\right)}} \right)} \right)}\right)}{4}$$
Daher,
$$\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x} = \frac{x \left(\sin{\left(\ln{\left(2 x \right)} \right)} - \cos{\left(\ln{\left(2 x \right)} \right)}\right)}{2}$$
Vereinfachen:
$$\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x} = - \frac{\sqrt{2} x \cos{\left(\ln{\left(x \right)} + \ln{\left(2 \right)} + \frac{\pi}{4} \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\sin{\left(\ln{\left(2 x \right)} \right)} d x} = - \frac{\sqrt{2} x \cos{\left(\ln{\left(x \right)} + \ln{\left(2 \right)} + \frac{\pi}{4} \right)}}{2}+C$$
Antwort
$$$\int \sin{\left(\ln\left(2 x\right) \right)}\, dx = - \frac{\sqrt{2} x \cos{\left(\ln\left(x\right) + \ln\left(2\right) + \frac{\pi}{4} \right)}}{2} + C$$$A