Integral von $$$\sin^{x}{\left(1 \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \sin^{x}{\left(1 \right)}\, dx$$$.
Lösung
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\sin{\left(1 \right)}$$$:
$${\color{red}{\int{\sin^{x}{\left(1 \right)} d x}}} = {\color{red}{\frac{\sin^{x}{\left(1 \right)}}{\ln{\left(\sin{\left(1 \right)} \right)}}}}$$
Daher,
$$\int{\sin^{x}{\left(1 \right)} d x} = \frac{\sin^{x}{\left(1 \right)}}{\ln{\left(\sin{\left(1 \right)} \right)}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\sin^{x}{\left(1 \right)} d x} = \frac{\sin^{x}{\left(1 \right)}}{\ln{\left(\sin{\left(1 \right)} \right)}}+C$$
Antwort
$$$\int \sin^{x}{\left(1 \right)}\, dx = \frac{\sin^{x}{\left(1 \right)}}{\ln\left(\sin{\left(1 \right)}\right)} + C$$$A