Integral von $$$e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$.
Lösung
Sei $$$u=\sin{\left(x \right)}$$$.
Dann $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\cos{\left(x \right)} dx = du$$$.
Daher,
$${\color{red}{\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
Das Integral der Exponentialfunktion lautet $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Zur Erinnerung: $$$u=\sin{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\sin{\left(x \right)}}}}$$
Daher,
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}+C$$
Antwort
$$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = e^{\sin{\left(x \right)}} + C$$$A