Integral von $$$a d e^{\frac{x^{2}}{a^{2}}}$$$ nach $$$x$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int a d e^{\frac{x^{2}}{a^{2}}}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=a d$$$ und $$$f{\left(x \right)} = e^{\frac{x^{2}}{a^{2}}}$$$ an:
$${\color{red}{\int{a d e^{\frac{x^{2}}{a^{2}}} d x}}} = {\color{red}{a d \int{e^{\frac{x^{2}}{a^{2}}} d x}}}$$
Sei $$$u=\frac{x}{\left|{a}\right|}$$$.
Dann $$$du=\left(\frac{x}{\left|{a}\right|}\right)^{\prime }dx = \frac{dx}{\left|{a}\right|}$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \left|{a}\right| du$$$.
Das Integral lässt sich umschreiben als
$$a d {\color{red}{\int{e^{\frac{x^{2}}{a^{2}}} d x}}} = a d {\color{red}{\int{e^{u^{2}} \left|{a}\right| d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\left|{a}\right|$$$ und $$$f{\left(u \right)} = e^{u^{2}}$$$ an:
$$a d {\color{red}{\int{e^{u^{2}} \left|{a}\right| d u}}} = a d {\color{red}{\left|{a}\right| \int{e^{u^{2}} d u}}}$$
Dieses Integral (Imaginäre Fehlerfunktion) besitzt keine geschlossene Form:
$$a d \left|{a}\right| {\color{red}{\int{e^{u^{2}} d u}}} = a d \left|{a}\right| {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$
Zur Erinnerung: $$$u=\frac{x}{\left|{a}\right|}$$$:
$$\frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left({\color{red}{\frac{x}{\left|{a}\right|}}} \right)}}{2}$$
Daher,
$$\int{a d e^{\frac{x^{2}}{a^{2}}} d x} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{a d e^{\frac{x^{2}}{a^{2}}} d x} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}+C$$
Antwort
$$$\int a d e^{\frac{x^{2}}{a^{2}}}\, dx = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2} + C$$$A