Integral von $$$\frac{1}{\left(1 - x\right)^{3}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{\left(1 - x\right)^{3}}\, dx$$$.
Lösung
Sei $$$u=1 - x$$$.
Dann $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = - du$$$.
Also,
$${\color{red}{\int{\frac{1}{\left(1 - x\right)^{3}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u^{3}}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-1$$$ und $$$f{\left(u \right)} = \frac{1}{u^{3}}$$$ an:
$${\color{red}{\int{\left(- \frac{1}{u^{3}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u^{3}} d u}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-3$$$ an:
$$- {\color{red}{\int{\frac{1}{u^{3}} d u}}}=- {\color{red}{\int{u^{-3} d u}}}=- {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=- {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=- {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$
Zur Erinnerung: $$$u=1 - x$$$:
$$\frac{{\color{red}{u}}^{-2}}{2} = \frac{{\color{red}{\left(1 - x\right)}}^{-2}}{2}$$
Daher,
$$\int{\frac{1}{\left(1 - x\right)^{3}} d x} = \frac{1}{2 \left(1 - x\right)^{2}}$$
Vereinfachen:
$$\int{\frac{1}{\left(1 - x\right)^{3}} d x} = \frac{1}{2 \left(x - 1\right)^{2}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{\left(1 - x\right)^{3}} d x} = \frac{1}{2 \left(x - 1\right)^{2}}+C$$
Antwort
$$$\int \frac{1}{\left(1 - x\right)^{3}}\, dx = \frac{1}{2 \left(x - 1\right)^{2}} + C$$$A