Integral von $$$\frac{\cos{\left(\theta \right)}}{1312}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\cos{\left(\theta \right)}}{1312}\, d\theta$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ mit $$$c=\frac{1}{1312}$$$ und $$$f{\left(\theta \right)} = \cos{\left(\theta \right)}$$$ an:
$${\color{red}{\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta}}} = {\color{red}{\left(\frac{\int{\cos{\left(\theta \right)} d \theta}}{1312}\right)}}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(\theta \right)} d \theta} = \sin{\left(\theta \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(\theta \right)} d \theta}}}}{1312} = \frac{{\color{red}{\sin{\left(\theta \right)}}}}{1312}$$
Daher,
$$\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta} = \frac{\sin{\left(\theta \right)}}{1312}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta} = \frac{\sin{\left(\theta \right)}}{1312}+C$$
Antwort
$$$\int \frac{\cos{\left(\theta \right)}}{1312}\, d\theta = \frac{\sin{\left(\theta \right)}}{1312} + C$$$A