Integral von $$$\frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx$$$.
Lösung
Sei $$$u=\sin{\left(x \right)}$$$.
Dann $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\cos{\left(x \right)} dx = du$$$.
Somit,
$${\color{red}{\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x}}} = {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}}$$
Sei $$$v=\ln{\left(u \right)}$$$.
Dann $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (die Schritte sind » zu sehen), und es gilt $$$\frac{du}{u} = dv$$$.
Also,
$${\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = {\color{red}{\int{\frac{1}{v} d v}}}$$
Das Integral von $$$\frac{1}{v}$$$ ist $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{v} d v}}} = {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Zur Erinnerung: $$$v=\ln{\left(u \right)}$$$:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$
Zur Erinnerung: $$$u=\sin{\left(x \right)}$$$:
$$\ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = \ln{\left(\left|{\ln{\left({\color{red}{\sin{\left(x \right)}}} \right)}}\right| \right)}$$
Daher,
$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\cot{\left(x \right)}}{\ln{\left(\sin{\left(x \right)} \right)}} d x} = \ln{\left(\left|{\ln{\left(\sin{\left(x \right)} \right)}}\right| \right)}+C$$
Antwort
$$$\int \frac{\cot{\left(x \right)}}{\ln\left(\sin{\left(x \right)}\right)}\, dx = \ln\left(\left|{\ln\left(\sin{\left(x \right)}\right)}\right|\right) + C$$$A