Integral von $$$\frac{8 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{8 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx$$$.
Lösung
Schreiben Sie den Integranden um:
$${\color{red}{\int{\frac{8 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{16 \cos^{2}{\left(x \right)} d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=16$$$ und $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$ an:
$${\color{red}{\int{16 \cos^{2}{\left(x \right)} d x}}} = {\color{red}{\left(16 \int{\cos^{2}{\left(x \right)} d x}\right)}}$$
Wende die Potenzreduktionsformel $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ mit $$$\alpha=x$$$ an:
$$16 {\color{red}{\int{\cos^{2}{\left(x \right)} d x}}} = 16 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$ an:
$$16 {\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}} = 16 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}$$
Gliedweise integrieren:
$$8 {\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}} = 8 {\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, dx = c x$$$ mit $$$c=1$$$ an:
$$8 \int{\cos{\left(2 x \right)} d x} + 8 {\color{red}{\int{1 d x}}} = 8 \int{\cos{\left(2 x \right)} d x} + 8 {\color{red}{x}}$$
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Das Integral lässt sich umschreiben als
$$8 x + 8 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 8 x + 8 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ an:
$$8 x + 8 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 8 x + 8 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$8 x + 4 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 8 x + 4 {\color{red}{\sin{\left(u \right)}}}$$
Zur Erinnerung: $$$u=2 x$$$:
$$8 x + 4 \sin{\left({\color{red}{u}} \right)} = 8 x + 4 \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$
Daher,
$$\int{\frac{8 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} d x} = 8 x + 4 \sin{\left(2 x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{8 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} d x} = 8 x + 4 \sin{\left(2 x \right)}+C$$
Antwort
$$$\int \frac{8 \sin{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx = \left(8 x + 4 \sin{\left(2 x \right)}\right) + C$$$A