Integral von $$$4 \sin{\left(\frac{\pi t}{2} \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=4$$$ und $$$f{\left(t \right)} = \sin{\left(\frac{\pi t}{2} \right)}$$$ an:
$${\color{red}{\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t}}} = {\color{red}{\left(4 \int{\sin{\left(\frac{\pi t}{2} \right)} d t}\right)}}$$
Sei $$$u=\frac{\pi t}{2}$$$.
Dann $$$du=\left(\frac{\pi t}{2}\right)^{\prime }dt = \frac{\pi}{2} dt$$$ (die Schritte sind » zu sehen), und es gilt $$$dt = \frac{2 du}{\pi}$$$.
Das Integral wird zu
$$4 {\color{red}{\int{\sin{\left(\frac{\pi t}{2} \right)} d t}}} = 4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{2}{\pi}$$$ und $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ an:
$$4 {\color{red}{\int{\frac{2 \sin{\left(u \right)}}{\pi} d u}}} = 4 {\color{red}{\left(\frac{2 \int{\sin{\left(u \right)} d u}}{\pi}\right)}}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{8 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{8 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$
Zur Erinnerung: $$$u=\frac{\pi t}{2}$$$:
$$- \frac{8 \cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{8 \cos{\left({\color{red}{\left(\frac{\pi t}{2}\right)}} \right)}}{\pi}$$
Daher,
$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{4 \sin{\left(\frac{\pi t}{2} \right)} d t} = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi}+C$$
Antwort
$$$\int 4 \sin{\left(\frac{\pi t}{2} \right)}\, dt = - \frac{8 \cos{\left(\frac{\pi t}{2} \right)}}{\pi} + C$$$A