Integral von $$$4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int 4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)}\, dx$$$.
Lösung
Wende die Potenzreduktionsformel $$$\sin^{3}{\left(\alpha \right)} = \frac{3 \sin{\left(\alpha \right)}}{4} - \frac{\sin{\left(3 \alpha \right)}}{4}$$$ mit $$$\alpha=7 x$$$ an:
$${\color{red}{\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x}}} = {\color{red}{\int{\left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{4}$$$ und $$$f{\left(x \right)} = 4 \left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)}$$$ an:
$${\color{red}{\int{\left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(\frac{\int{4 \left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}{4}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{4 \left(3 \sin{\left(7 x \right)} - \sin{\left(21 x \right)}\right) \cos{\left(7 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} - 4 \sin{\left(21 x \right)} \cos{\left(7 x \right)}\right)d x}}}}{4}$$
Gliedweise integrieren:
$$\frac{{\color{red}{\int{\left(12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} - 4 \sin{\left(21 x \right)} \cos{\left(7 x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x} - \int{4 \sin{\left(21 x \right)} \cos{\left(7 x \right)} d x}\right)}}}{4}$$
Schreibe $$$\sin\left(21 x \right)\cos\left(7 x \right)$$$ mithilfe der Formel $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ mit $$$\alpha=21 x$$$ und $$$\beta=7 x$$$ um:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{4 \sin{\left(21 x \right)} \cos{\left(7 x \right)} d x}}}}{4} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(2 \sin{\left(14 x \right)} + 2 \sin{\left(28 x \right)}\right)d x}}}}{4}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = 4 \sin{\left(14 x \right)} + 4 \sin{\left(28 x \right)}$$$ an:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(2 \sin{\left(14 x \right)} + 2 \sin{\left(28 x \right)}\right)d x}}}}{4} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\left(4 \sin{\left(14 x \right)} + 4 \sin{\left(28 x \right)}\right)d x}}{2}\right)}}}{4}$$
Gliedweise integrieren:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(4 \sin{\left(14 x \right)} + 4 \sin{\left(28 x \right)}\right)d x}}}}{8} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(\int{4 \sin{\left(14 x \right)} d x} + \int{4 \sin{\left(28 x \right)} d x}\right)}}}{8}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=4$$$ und $$$f{\left(x \right)} = \sin{\left(14 x \right)}$$$ an:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{4 \sin{\left(14 x \right)} d x}}}}{8} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\left(4 \int{\sin{\left(14 x \right)} d x}\right)}}}{8}$$
Sei $$$u=14 x$$$.
Dann $$$du=\left(14 x\right)^{\prime }dx = 14 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{14}$$$.
Daher,
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\sin{\left(14 x \right)} d x}}}}{2} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{14} d u}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{14}$$$ und $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ an:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{14} d u}}}}{2} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{14}\right)}}}{2}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{28} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{28}$$
Zur Erinnerung: $$$u=14 x$$$:
$$\frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} + \frac{\cos{\left({\color{red}{u}} \right)}}{28} = \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{\int{4 \sin{\left(28 x \right)} d x}}{8} + \frac{\cos{\left({\color{red}{\left(14 x\right)}} \right)}}{28}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=4$$$ und $$$f{\left(x \right)} = \sin{\left(28 x \right)}$$$ an:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{4 \sin{\left(28 x \right)} d x}}}}{8} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(4 \int{\sin{\left(28 x \right)} d x}\right)}}}{8}$$
Sei $$$u=28 x$$$.
Dann $$$du=\left(28 x\right)^{\prime }dx = 28 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{28}$$$.
Daher,
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(28 x \right)} d x}}}}{2} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{28} d u}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{28}$$$ und $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ an:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{28} d u}}}}{2} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{28}\right)}}}{2}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{56} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{56}$$
Zur Erinnerung: $$$u=28 x$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} + \frac{\cos{\left({\color{red}{u}} \right)}}{56} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}{4} + \frac{\cos{\left({\color{red}{\left(28 x\right)}} \right)}}{56}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=12$$$ und $$$f{\left(x \right)} = \sin{\left(7 x \right)} \cos{\left(7 x \right)}$$$ an:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{{\color{red}{\int{12 \sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}}}{4} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{{\color{red}{\left(12 \int{\sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}\right)}}}{4}$$
Sei $$$u=\sin{\left(7 x \right)}$$$.
Dann $$$du=\left(\sin{\left(7 x \right)}\right)^{\prime }dx = 7 \cos{\left(7 x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\cos{\left(7 x \right)} dx = \frac{du}{7}$$$.
Das Integral lässt sich umschreiben als
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\int{\sin{\left(7 x \right)} \cos{\left(7 x \right)} d x}}} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\int{\frac{u}{7} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{7}$$$ und $$$f{\left(u \right)} = u$$$ an:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\int{\frac{u}{7} d u}}} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + 3 {\color{red}{\left(\frac{\int{u d u}}{7}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\int{u d u}}}}{7}=\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{7}=\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{7}$$
Zur Erinnerung: $$$u=\sin{\left(7 x \right)}$$$:
$$\frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{u}}^{2}}{14} = \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56} + \frac{3 {\color{red}{\sin{\left(7 x \right)}}}^{2}}{14}$$
Daher,
$$\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x} = \frac{3 \sin^{2}{\left(7 x \right)}}{14} + \frac{\cos{\left(14 x \right)}}{28} + \frac{\cos{\left(28 x \right)}}{56}$$
Vereinfachen:
$$\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x} = \frac{\sin^{4}{\left(7 x \right)}}{7} + \frac{3}{56}$$
Fügen Sie die Integrationskonstante hinzu (und entfernen Sie die Konstante aus dem Ausdruck):
$$\int{4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)} d x} = \frac{\sin^{4}{\left(7 x \right)}}{7}+C$$
Antwort
$$$\int 4 \sin^{3}{\left(7 x \right)} \cos{\left(7 x \right)}\, dx = \frac{\sin^{4}{\left(7 x \right)}}{7} + C$$$A