Integral von $$$- 4 t$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- 4 t\right)\, dt$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=-4$$$ und $$$f{\left(t \right)} = t$$$ an:
$${\color{red}{\int{\left(- 4 t\right)d t}}} = {\color{red}{\left(- 4 \int{t d t}\right)}}$$
Wenden Sie die Potenzregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:
$$- 4 {\color{red}{\int{t d t}}}=- 4 {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=- 4 {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
Daher,
$$\int{\left(- 4 t\right)d t} = - 2 t^{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- 4 t\right)d t} = - 2 t^{2}+C$$
Antwort
$$$\int \left(- 4 t\right)\, dt = - 2 t^{2} + C$$$A