Integral von $$$2 x \operatorname{atan}{\left(x \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int 2 x \operatorname{atan}{\left(x \right)}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=2$$$ und $$$f{\left(x \right)} = x \operatorname{atan}{\left(x \right)}$$$ an:
$${\color{red}{\int{2 x \operatorname{atan}{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{x \operatorname{atan}{\left(x \right)} d x}\right)}}$$
Für das Integral $$$\int{x \operatorname{atan}{\left(x \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\operatorname{atan}{\left(x \right)}$$$ und $$$\operatorname{dv}=x dx$$$.
Dann gilt $$$\operatorname{du}=\left(\operatorname{atan}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x^{2} + 1}$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (Rechenschritte siehe »).
Das Integral wird zu
$$2 {\color{red}{\int{x \operatorname{atan}{\left(x \right)} d x}}}=2 {\color{red}{\left(\operatorname{atan}{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x^{2} + 1} d x}\right)}}=2 {\color{red}{\left(\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \int{\frac{x^{2}}{2 x^{2} + 2} d x}\right)}}$$
Den Integranden vereinfachen:
$$x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\int{\frac{x^{2}}{2 x^{2} + 2} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$ an:
$$x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\left(\frac{\int{\frac{x^{2}}{x^{2} + 1} d x}}{2}\right)}}$$
Forme den Bruch um und zerlege ihn:
$$x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}$$
Gliedweise integrieren:
$$x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, dx = c x$$$ mit $$$c=1$$$ an:
$$x^{2} \operatorname{atan}{\left(x \right)} + \int{\frac{1}{x^{2} + 1} d x} - {\color{red}{\int{1 d x}}} = x^{2} \operatorname{atan}{\left(x \right)} + \int{\frac{1}{x^{2} + 1} d x} - {\color{red}{x}}$$
Das Integral von $$$\frac{1}{x^{2} + 1}$$$ ist $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$x^{2} \operatorname{atan}{\left(x \right)} - x + {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - x + {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Daher,
$$\int{2 x \operatorname{atan}{\left(x \right)} d x} = x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{2 x \operatorname{atan}{\left(x \right)} d x} = x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}+C$$
Antwort
$$$\int 2 x \operatorname{atan}{\left(x \right)}\, dx = \left(x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}\right) + C$$$A