Integral von $$$\frac{\sqrt{x - 1}}{x}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sqrt{x - 1}}{x}\, dx$$$.
Lösung
Sei $$$u=\sqrt{x - 1}$$$.
Dann $$$du=\left(\sqrt{x - 1}\right)^{\prime }dx = \frac{1}{2 \sqrt{x - 1}} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\frac{dx}{\sqrt{x - 1}} = 2 du$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{\frac{\sqrt{x - 1}}{x} d x}}} = {\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=2$$$ und $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ an:
$${\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}} = {\color{red}{\left(2 \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
Forme den Bruch um und zerlege ihn:
$$2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Gliedweise integrieren:
$$2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=1$$$ an:
$$- 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u^{2} + 1} d u} + 2 {\color{red}{u}}$$
Das Integral von $$$\frac{1}{u^{2} + 1}$$$ ist $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$2 u - 2 {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = 2 u - 2 {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Zur Erinnerung: $$$u=\sqrt{x - 1}$$$:
$$- 2 \operatorname{atan}{\left({\color{red}{u}} \right)} + 2 {\color{red}{u}} = - 2 \operatorname{atan}{\left({\color{red}{\sqrt{x - 1}}} \right)} + 2 {\color{red}{\sqrt{x - 1}}}$$
Daher,
$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sqrt{x - 1}}{x} d x} = 2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}+C$$
Antwort
$$$\int \frac{\sqrt{x - 1}}{x}\, dx = \left(2 \sqrt{x - 1} - 2 \operatorname{atan}{\left(\sqrt{x - 1} \right)}\right) + C$$$A