Integral von $$$2^{- \frac{t}{5}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int 2^{- \frac{t}{5}}\, dt$$$.
Lösung
Die Eingabe wird umgeschrieben: $$$\int{2^{- \frac{t}{5}} d t}=\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t}$$$.
Apply the exponential rule $$$\int{a^{t} d t} = \frac{a^{t}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{2^{\frac{4}{5}}}{2}$$$:
$${\color{red}{\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t}}} = {\color{red}{\frac{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t}}{\ln{\left(\frac{2^{\frac{4}{5}}}{2} \right)}}}}$$
Daher,
$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = \frac{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t}}{\ln{\left(\frac{2^{\frac{4}{5}}}{2} \right)}}$$
Vereinfachen:
$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln{\left(2 \right)}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln{\left(2 \right)}}+C$$
Antwort
$$$\int 2^{- \frac{t}{5}}\, dt = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln\left(2\right)} + C$$$A