Integral von $$$\frac{1}{2 x \left(x^{4} + 1\right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{2 x \left(x^{4} + 1\right)}\, dx$$$.
Lösung
Sei $$$u=x^{4} + 1$$$.
Dann $$$du=\left(x^{4} + 1\right)^{\prime }dx = 4 x^{3} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$x^{3} dx = \frac{du}{4}$$$.
Daher,
$${\color{red}{\int{\frac{1}{2 x \left(x^{4} + 1\right)} d x}}} = {\color{red}{\int{\frac{1}{8 u \left(u - 1\right)} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{8}$$$ und $$$f{\left(u \right)} = \frac{1}{u \left(u - 1\right)}$$$ an:
$${\color{red}{\int{\frac{1}{8 u \left(u - 1\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u \left(u - 1\right)} d u}}{8}\right)}}$$
Partialbruchzerlegung durchführen (die Schritte sind » zu sehen):
$$\frac{{\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}}{8} = \frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{8}$$
Gliedweise integrieren:
$$\frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{8} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}}{8}$$
Sei $$$v=u - 1$$$.
Dann $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = dv$$$.
Das Integral wird zu
$$- \frac{\int{\frac{1}{u} d u}}{8} + \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{8} = - \frac{\int{\frac{1}{u} d u}}{8} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{8}$$
Das Integral von $$$\frac{1}{v}$$$ ist $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \frac{\int{\frac{1}{u} d u}}{8} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{8} = - \frac{\int{\frac{1}{u} d u}}{8} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{8}$$
Zur Erinnerung: $$$v=u - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{8} - \frac{\int{\frac{1}{u} d u}}{8} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{8} - \frac{\int{\frac{1}{u} d u}}{8}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{8} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{8} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
Zur Erinnerung: $$$u=x^{4} + 1$$$:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{8} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = \frac{\ln{\left(\left|{-1 + {\color{red}{\left(x^{4} + 1\right)}}}\right| \right)}}{8} - \frac{\ln{\left(\left|{{\color{red}{\left(x^{4} + 1\right)}}}\right| \right)}}{8}$$
Daher,
$$\int{\frac{1}{2 x \left(x^{4} + 1\right)} d x} = \frac{\ln{\left(x^{4} \right)}}{8} - \frac{\ln{\left(x^{4} + 1 \right)}}{8}$$
Vereinfachen:
$$\int{\frac{1}{2 x \left(x^{4} + 1\right)} d x} = \frac{\ln{\left(x \right)}}{2} - \frac{\ln{\left(x^{4} + 1 \right)}}{8}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{2 x \left(x^{4} + 1\right)} d x} = \frac{\ln{\left(x \right)}}{2} - \frac{\ln{\left(x^{4} + 1 \right)}}{8}+C$$
Antwort
$$$\int \frac{1}{2 x \left(x^{4} + 1\right)}\, dx = \left(\frac{\ln\left(x\right)}{2} - \frac{\ln\left(x^{4} + 1\right)}{8}\right) + C$$$A