Integral von $$$\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx$$$.
Lösung
Sei $$$u=\frac{x}{3}$$$.
Dann $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = 3 du$$$.
Also,
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x}}} = {\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=3$$$ und $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$ an:
$${\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(3 \int{\frac{1}{\sin^{2}{\left(u \right)}} d u}\right)}}$$
Schreiben Sie den Integranden in Bezug auf die Kosekans um.:
$$3 {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = 3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
Das Integral von $$$\csc^{2}{\left(u \right)}$$$ ist $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:
$$3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = 3 {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
Zur Erinnerung: $$$u=\frac{x}{3}$$$:
$$- 3 \cot{\left({\color{red}{u}} \right)} = - 3 \cot{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$
Daher,
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}+C$$
Antwort
$$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx = - 3 \cot{\left(\frac{x}{3} \right)} + C$$$A