Integral von $$$\frac{1}{4 - 9 x^{2}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{4 - 9 x^{2}}\, dx$$$.
Lösung
Partialbruchzerlegung durchführen (die Schritte sind » zu sehen):
$${\color{red}{\int{\frac{1}{4 - 9 x^{2}} d x}}} = {\color{red}{\int{\left(\frac{1}{4 \left(3 x + 2\right)} - \frac{1}{4 \left(3 x - 2\right)}\right)d x}}}$$
Gliedweise integrieren:
$${\color{red}{\int{\left(\frac{1}{4 \left(3 x + 2\right)} - \frac{1}{4 \left(3 x - 2\right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{4 \left(3 x - 2\right)} d x} + \int{\frac{1}{4 \left(3 x + 2\right)} d x}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{4}$$$ und $$$f{\left(x \right)} = \frac{1}{3 x - 2}$$$ an:
$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - {\color{red}{\int{\frac{1}{4 \left(3 x - 2\right)} d x}}} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{3 x - 2} d x}}{4}\right)}}$$
Sei $$$u=3 x - 2$$$.
Dann $$$du=\left(3 x - 2\right)^{\prime }dx = 3 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{3}$$$.
Also,
$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 x - 2} d x}}}}{4} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{3}$$$ und $$$f{\left(u \right)} = \frac{1}{u}$$$ an:
$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = \int{\frac{1}{4 \left(3 x + 2\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$
Zur Erinnerung: $$$u=3 x - 2$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x + 2\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(3 x - 2\right)}}}\right| \right)}}{12} + \int{\frac{1}{4 \left(3 x + 2\right)} d x}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{4}$$$ und $$$f{\left(x \right)} = \frac{1}{3 x + 2}$$$ an:
$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + {\color{red}{\int{\frac{1}{4 \left(3 x + 2\right)} d x}}} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + {\color{red}{\left(\frac{\int{\frac{1}{3 x + 2} d x}}{4}\right)}}$$
Sei $$$u=3 x + 2$$$.
Dann $$$du=\left(3 x + 2\right)^{\prime }dx = 3 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{3}$$$.
Daher,
$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 x + 2} d x}}}}{4} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{3}$$$ und $$$f{\left(u \right)} = \frac{1}{u}$$$ an:
$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{3 u} d u}}}}{4} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{3}\right)}}}{4}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{12} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{12}$$
Zur Erinnerung: $$$u=3 x + 2$$$:
$$- \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{12} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{{\color{red}{\left(3 x + 2\right)}}}\right| \right)}}{12}$$
Daher,
$$\int{\frac{1}{4 - 9 x^{2}} d x} = - \frac{\ln{\left(\left|{3 x - 2}\right| \right)}}{12} + \frac{\ln{\left(\left|{3 x + 2}\right| \right)}}{12}$$
Vereinfachen:
$$\int{\frac{1}{4 - 9 x^{2}} d x} = \frac{- \ln{\left(\left|{3 x - 2}\right| \right)} + \ln{\left(\left|{3 x + 2}\right| \right)}}{12}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{4 - 9 x^{2}} d x} = \frac{- \ln{\left(\left|{3 x - 2}\right| \right)} + \ln{\left(\left|{3 x + 2}\right| \right)}}{12}+C$$
Antwort
$$$\int \frac{1}{4 - 9 x^{2}}\, dx = \frac{- \ln\left(\left|{3 x - 2}\right|\right) + \ln\left(\left|{3 x + 2}\right|\right)}{12} + C$$$A