Integral von $$$\frac{1}{\left(3 x - 1\right)^{2}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx$$$.
Lösung
Sei $$$u=3 x - 1$$$.
Dann $$$du=\left(3 x - 1\right)^{\prime }dx = 3 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{3}$$$.
Somit,
$${\color{red}{\int{\frac{1}{\left(3 x - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{3 u^{2}} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{3}$$$ und $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ an:
$${\color{red}{\int{\frac{1}{3 u^{2}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u^{2}} d u}}{3}\right)}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=-2$$$ an:
$$\frac{{\color{red}{\int{\frac{1}{u^{2}} d u}}}}{3}=\frac{{\color{red}{\int{u^{-2} d u}}}}{3}=\frac{{\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}}{3}=\frac{{\color{red}{\left(- u^{-1}\right)}}}{3}=\frac{{\color{red}{\left(- \frac{1}{u}\right)}}}{3}$$
Zur Erinnerung: $$$u=3 x - 1$$$:
$$- \frac{{\color{red}{u}}^{-1}}{3} = - \frac{{\color{red}{\left(3 x - 1\right)}}^{-1}}{3}$$
Daher,
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{3 \left(3 x - 1\right)}$$
Vereinfachen:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{\left(3 x - 1\right)^{2}} d x} = - \frac{1}{9 x - 3}+C$$
Antwort
$$$\int \frac{1}{\left(3 x - 1\right)^{2}}\, dx = - \frac{1}{9 x - 3} + C$$$A