Integral von $$$\frac{1}{1 - \cos{\left(2 x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{1 - \cos{\left(2 x \right)}}\, dx$$$.
Lösung
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 1\right)}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=- \frac{1}{2}$$$ und $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)} - 1}$$$ an:
$${\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 1\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\cos{\left(u \right)} - 1} d u}}{2}\right)}}$$
Schreibe den Kosinus mithilfe der Doppelwinkel-Formel $$$\cos\left( u \right)=1-2\sin^2\left(\frac{ u }{2}\right)$$$ um und vereinfache.:
$$- \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)} - 1} d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{2 \sin^{2}{\left(\frac{u}{2} \right)}}\right)d u}}}}{2}$$
Sei $$$v=\frac{u}{2}$$$.
Dann $$$dv=\left(\frac{u}{2}\right)^{\prime }du = \frac{du}{2}$$$ (die Schritte sind » zu sehen), und es gilt $$$du = 2 dv$$$.
Somit,
$$- \frac{{\color{red}{\int{\left(- \frac{1}{2 \sin^{2}{\left(\frac{u}{2} \right)}}\right)d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{\sin^{2}{\left(v \right)}}\right)d v}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=-1$$$ und $$$f{\left(v \right)} = \frac{1}{\sin^{2}{\left(v \right)}}$$$ an:
$$- \frac{{\color{red}{\int{\left(- \frac{1}{\sin^{2}{\left(v \right)}}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{\frac{1}{\sin^{2}{\left(v \right)}} d v}\right)}}}{2}$$
Schreiben Sie den Integranden in Bezug auf die Kosekans um.:
$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(v \right)}} d v}}}}{2} = \frac{{\color{red}{\int{\csc^{2}{\left(v \right)} d v}}}}{2}$$
Das Integral von $$$\csc^{2}{\left(v \right)}$$$ ist $$$\int{\csc^{2}{\left(v \right)} d v} = - \cot{\left(v \right)}$$$:
$$\frac{{\color{red}{\int{\csc^{2}{\left(v \right)} d v}}}}{2} = \frac{{\color{red}{\left(- \cot{\left(v \right)}\right)}}}{2}$$
Zur Erinnerung: $$$v=\frac{u}{2}$$$:
$$- \frac{\cot{\left({\color{red}{v}} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(\frac{u}{2}\right)}} \right)}}{2}$$
Zur Erinnerung: $$$u=2 x$$$:
$$- \frac{\cot{\left(\frac{{\color{red}{u}}}{2} \right)}}{2} = - \frac{\cot{\left(\frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}{2}$$
Daher,
$$\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x} = - \frac{\cot{\left(x \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x} = - \frac{\cot{\left(x \right)}}{2}+C$$
Antwort
$$$\int \frac{1}{1 - \cos{\left(2 x \right)}}\, dx = - \frac{\cot{\left(x \right)}}{2} + C$$$A