Integral von $$$\frac{1}{1 - 2 x}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{1 - 2 x}\, dx$$$.
Lösung
Sei $$$u=1 - 2 x$$$.
Dann $$$du=\left(1 - 2 x\right)^{\prime }dx = - 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = - \frac{du}{2}$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{\frac{1}{1 - 2 x} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=- \frac{1}{2}$$$ und $$$f{\left(u \right)} = \frac{1}{u}$$$ an:
$${\color{red}{\int{\left(- \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$u=1 - 2 x$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\left(1 - 2 x\right)}}}\right| \right)}}{2}$$
Daher,
$$\int{\frac{1}{1 - 2 x} d x} = - \frac{\ln{\left(\left|{2 x - 1}\right| \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{1 - 2 x} d x} = - \frac{\ln{\left(\left|{2 x - 1}\right| \right)}}{2}+C$$
Antwort
$$$\int \frac{1}{1 - 2 x}\, dx = - \frac{\ln\left(\left|{2 x - 1}\right|\right)}{2} + C$$$A