Integral von $$$- e^{2 x} \cos{\left(e^{x} \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- e^{2 x} \cos{\left(e^{x} \right)}\right)\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=-1$$$ und $$$f{\left(x \right)} = e^{2 x} \cos{\left(e^{x} \right)}$$$ an:
$${\color{red}{\int{\left(- e^{2 x} \cos{\left(e^{x} \right)}\right)d x}}} = {\color{red}{\left(- \int{e^{2 x} \cos{\left(e^{x} \right)} d x}\right)}}$$
Sei $$$u=2 x$$$.
Dann $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{2}$$$.
Das Integral lässt sich umschreiben als
$$- {\color{red}{\int{e^{2 x} \cos{\left(e^{x} \right)} d x}}} = - {\color{red}{\int{\frac{e^{u} \cos{\left(e^{\frac{u}{2}} \right)}}{2} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = e^{u} \cos{\left(e^{\frac{u}{2}} \right)}$$$ an:
$$- {\color{red}{\int{\frac{e^{u} \cos{\left(e^{\frac{u}{2}} \right)}}{2} d u}}} = - {\color{red}{\left(\frac{\int{e^{u} \cos{\left(e^{\frac{u}{2}} \right)} d u}}{2}\right)}}$$
Sei $$$v=e^{\frac{u}{2}}$$$.
Dann $$$dv=\left(e^{\frac{u}{2}}\right)^{\prime }du = \frac{e^{\frac{u}{2}}}{2} du$$$ (die Schritte sind » zu sehen), und es gilt $$$e^{\frac{u}{2}} du = 2 dv$$$.
Somit,
$$- \frac{{\color{red}{\int{e^{u} \cos{\left(e^{\frac{u}{2}} \right)} d u}}}}{2} = - \frac{{\color{red}{\int{2 v \cos{\left(v \right)} d v}}}}{2}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=2$$$ und $$$f{\left(v \right)} = v \cos{\left(v \right)}$$$ an:
$$- \frac{{\color{red}{\int{2 v \cos{\left(v \right)} d v}}}}{2} = - \frac{{\color{red}{\left(2 \int{v \cos{\left(v \right)} d v}\right)}}}{2}$$
Für das Integral $$$\int{v \cos{\left(v \right)} d v}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{m} \operatorname{dy} = \operatorname{m}\operatorname{y} - \int \operatorname{y} \operatorname{dm}$$$.
Seien $$$\operatorname{m}=v$$$ und $$$\operatorname{dy}=\cos{\left(v \right)} dv$$$.
Dann gilt $$$\operatorname{dm}=\left(v\right)^{\prime }dv=1 dv$$$ (Rechenschritte siehe ») und $$$\operatorname{y}=\int{\cos{\left(v \right)} d v}=\sin{\left(v \right)}$$$ (Rechenschritte siehe »).
Das Integral wird zu
$$- {\color{red}{\int{v \cos{\left(v \right)} d v}}}=- {\color{red}{\left(v \cdot \sin{\left(v \right)}-\int{\sin{\left(v \right)} \cdot 1 d v}\right)}}=- {\color{red}{\left(v \sin{\left(v \right)} - \int{\sin{\left(v \right)} d v}\right)}}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$$- v \sin{\left(v \right)} + {\color{red}{\int{\sin{\left(v \right)} d v}}} = - v \sin{\left(v \right)} + {\color{red}{\left(- \cos{\left(v \right)}\right)}}$$
Zur Erinnerung: $$$v=e^{\frac{u}{2}}$$$:
$$- \cos{\left({\color{red}{v}} \right)} - {\color{red}{v}} \sin{\left({\color{red}{v}} \right)} = - \cos{\left({\color{red}{e^{\frac{u}{2}}}} \right)} - {\color{red}{e^{\frac{u}{2}}}} \sin{\left({\color{red}{e^{\frac{u}{2}}}} \right)}$$
Zur Erinnerung: $$$u=2 x$$$:
$$- e^{\frac{{\color{red}{u}}}{2}} \sin{\left(e^{\frac{{\color{red}{u}}}{2}} \right)} - \cos{\left(e^{\frac{{\color{red}{u}}}{2}} \right)} = - e^{\frac{{\color{red}{\left(2 x\right)}}}{2}} \sin{\left(e^{\frac{{\color{red}{\left(2 x\right)}}}{2}} \right)} - \cos{\left(e^{\frac{{\color{red}{\left(2 x\right)}}}{2}} \right)}$$
Daher,
$$\int{\left(- e^{2 x} \cos{\left(e^{x} \right)}\right)d x} = - e^{x} \sin{\left(e^{x} \right)} - \cos{\left(e^{x} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- e^{2 x} \cos{\left(e^{x} \right)}\right)d x} = - e^{x} \sin{\left(e^{x} \right)} - \cos{\left(e^{x} \right)}+C$$
Antwort
$$$\int \left(- e^{2 x} \cos{\left(e^{x} \right)}\right)\, dx = \left(- e^{x} \sin{\left(e^{x} \right)} - \cos{\left(e^{x} \right)}\right) + C$$$A