Integral von $$$- 3 \cos{\left(\frac{x}{3} \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- 3 \cos{\left(\frac{x}{3} \right)}\right)\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=-3$$$ und $$$f{\left(x \right)} = \cos{\left(\frac{x}{3} \right)}$$$ an:
$${\color{red}{\int{\left(- 3 \cos{\left(\frac{x}{3} \right)}\right)d x}}} = {\color{red}{\left(- 3 \int{\cos{\left(\frac{x}{3} \right)} d x}\right)}}$$
Sei $$$u=\frac{x}{3}$$$.
Dann $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = 3 du$$$.
Somit,
$$- 3 {\color{red}{\int{\cos{\left(\frac{x}{3} \right)} d x}}} = - 3 {\color{red}{\int{3 \cos{\left(u \right)} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=3$$$ und $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ an:
$$- 3 {\color{red}{\int{3 \cos{\left(u \right)} d u}}} = - 3 {\color{red}{\left(3 \int{\cos{\left(u \right)} d u}\right)}}$$
Das Integral des Kosinus ist $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- 9 {\color{red}{\int{\cos{\left(u \right)} d u}}} = - 9 {\color{red}{\sin{\left(u \right)}}}$$
Zur Erinnerung: $$$u=\frac{x}{3}$$$:
$$- 9 \sin{\left({\color{red}{u}} \right)} = - 9 \sin{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$
Daher,
$$\int{\left(- 3 \cos{\left(\frac{x}{3} \right)}\right)d x} = - 9 \sin{\left(\frac{x}{3} \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- 3 \cos{\left(\frac{x}{3} \right)}\right)d x} = - 9 \sin{\left(\frac{x}{3} \right)}+C$$
Antwort
$$$\int \left(- 3 \cos{\left(\frac{x}{3} \right)}\right)\, dx = - 9 \sin{\left(\frac{x}{3} \right)} + C$$$A