Integral von $$$- \frac{1}{2 t^{\frac{4}{3}}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- \frac{1}{2 t^{\frac{4}{3}}}\right)\, dt$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=- \frac{1}{2}$$$ und $$$f{\left(t \right)} = \frac{1}{t^{\frac{4}{3}}}$$$ an:
$${\color{red}{\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t}}} = {\color{red}{\left(- \frac{\int{\frac{1}{t^{\frac{4}{3}}} d t}}{2}\right)}}$$
Wenden Sie die Potenzregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=- \frac{4}{3}$$$ an:
$$- \frac{{\color{red}{\int{\frac{1}{t^{\frac{4}{3}}} d t}}}}{2}=- \frac{{\color{red}{\int{t^{- \frac{4}{3}} d t}}}}{2}=- \frac{{\color{red}{\frac{t^{- \frac{4}{3} + 1}}{- \frac{4}{3} + 1}}}}{2}=- \frac{{\color{red}{\left(- 3 t^{- \frac{1}{3}}\right)}}}{2}=- \frac{{\color{red}{\left(- \frac{3}{\sqrt[3]{t}}\right)}}}{2}$$
Daher,
$$\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t} = \frac{3}{2 \sqrt[3]{t}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- \frac{1}{2 t^{\frac{4}{3}}}\right)d t} = \frac{3}{2 \sqrt[3]{t}}+C$$
Antwort
$$$\int \left(- \frac{1}{2 t^{\frac{4}{3}}}\right)\, dt = \frac{3}{2 \sqrt[3]{t}} + C$$$A