Integral von $$$- \frac{3}{\sqrt{y^{3}}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- \frac{3}{\sqrt{y^{3}}}\right)\, dy$$$.
Lösung
Die Eingabe wird umgeschrieben: $$$\int{\left(- \frac{3}{\sqrt{y^{3}}}\right)d y}=\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y}$$$.
Wende die Konstantenfaktorregel $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ mit $$$c=-3$$$ und $$$f{\left(y \right)} = \frac{1}{y^{\frac{3}{2}}}$$$ an:
$${\color{red}{\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y}}} = {\color{red}{\left(- 3 \int{\frac{1}{y^{\frac{3}{2}}} d y}\right)}}$$
Wenden Sie die Potenzregel $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=- \frac{3}{2}$$$ an:
$$- 3 {\color{red}{\int{\frac{1}{y^{\frac{3}{2}}} d y}}}=- 3 {\color{red}{\int{y^{- \frac{3}{2}} d y}}}=- 3 {\color{red}{\frac{y^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}=- 3 {\color{red}{\left(- 2 y^{- \frac{1}{2}}\right)}}=- 3 {\color{red}{\left(- \frac{2}{\sqrt{y}}\right)}}$$
Daher,
$$\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y} = \frac{6}{\sqrt{y}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- \frac{3}{y^{\frac{3}{2}}}\right)d y} = \frac{6}{\sqrt{y}}+C$$
Antwort
$$$\int \left(- \frac{3}{\sqrt{y^{3}}}\right)\, dy = \frac{6}{\sqrt{y}} + C$$$A