Integral von $$$\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}$$$ nach $$$x$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}\, dx$$$.
Lösung
Wenden Sie die Konstantenregel $$$\int c\, dx = c x$$$ mit $$$c=\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}$$$ an:
$${\color{red}{\int{\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} d x}}} = {\color{red}{x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}}}$$
Daher,
$$\int{\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} d x} = x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} d x} = x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}+C$$
Antwort
$$$\int \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)}\, dx = x \left(y - \sin{\left(y \right)}\right) \cos{\left(y \right)} + C$$$A